A vector has an x component of -27.5 units and a y component of 41.4 units. Find the magnitude and direction of this vector. magnitude _________ unit(s) direction _____________ º counterclockwise from the +x axis

Respuesta :

Answer:

a.) magnitude __49.7__ unit(s)

b.) direction __123.6°_  counterclockwise from the +x axis

Explanation:

Let Vector is v

x-component of Vector v = x = -27.5 units   (minus sign indicate that x-component is along the minus x-axis )

y-component of Vector v = y = 41.4 units

Magnitude of v = ?

Direction of v = ?

To find the magnitude of the vector

                                     v =[tex]\sqrt{x^{2}+y^{2}  }[/tex]  

                                     v = [tex]\sqrt{-27.5^{2}+41.4^{2} }[/tex]

                                     v = 49.7 units  

To find direction

                                 θ = tan⁻¹(y/x)

                                 θ = tan⁻¹(41.4/-27.5)

                                 θ = -56.4°

This Angle is in the clockwise direction with respect to -x axis.

We need to find Angle counterclockwise from the +x axis.

So,

                                 θ = 180° - 56.4°

                                 θ = 123.6°                

The given vector is in 2nd quadrant