to masses 7 kg and 12 KG are connected at the two ends of a light inextensible string that passes over a fictional Pulley using free body diagram method find acceleration of masses and the tension in the string when the masses are released ​

Respuesta :

Tension in the string when the masses are released ​is 88.42  N

Acceleration of masses is [tex]\bold{a=2.578 m/sec^2}[/tex]

Explanation:  

Given:

Mass ,m1 = 12

Mass , m2 = 7  

g = [tex]9.8m/s^2[/tex]

To Find :

Tension  in the string=?

Acceleration of masses=?

Solution:

For mass M_1  

[tex]M_1 a=T-M_1 g[/tex]--------------------(1)

For mass M2

[tex]M_2 a=T-M_2 g[/tex]---------------------(2)

Adding equation (1) and (2)

[tex](M_1+M_2)a=(M_2-M_1)g[/tex]

Finding Acceleration:

Acceleration is given by

[tex]a=(M_2-M_1 )/(M_1+M_2) g[/tex]

Substituting the values,

[tex]a=\frac{(12-7)(9.8)}{(7+12)}[/tex]

[tex]a=\frac{(5)(9.8)}{19}[/tex]

[tex]a=\frac {49}{19}[/tex]

[tex]a=2.578 m/sec^2[/tex]

Finding Tension:

From  Equation 1

[tex]M_1 a=T-M_1 g[/tex]

Tension can be

[tex]T=M_1 a+M_1 g[/tex]

T=(7)(2.578) + 7(9.8)

T=(17.99)+(68.6)

T=86.59 N