Respuesta :

Answer:

IS NOT; ARE NOT

Step-by-step explanation:

Given: [tex]\[  \begin{bmatrix}    \frac{1}{4} & \frac{1}{4}\\    \\-1 & \frac{-1}{2} \end{bmatrix}\][/tex]

and [tex]\[A =  \begin{bmatrix}    \frac{1}{4} & \frac{1}{4} \\\\    -1 & \frac{-1}{2}  \end{bmatrix}\][/tex]

We say two matrices [tex]$ A $[/tex] and [tex]$ B $[/tex] are inverses of each other when [tex]$ AB = BA = I $[/tex] where [tex]$ I $[/tex] is the identity matrix.

[tex]\[I =  \begin{bmatrix}    1 & 0\\    0 & 1  \end{bmatrix}\][/tex]

So, for [tex]$ X $[/tex] and [tex]$ A $[/tex] to be inverses of each other, we should have [tex]$ AX = XA = I $[/tex].

Let us calculate [tex]$ XA $[/tex].

[tex]\[\begin{bmatrix} -2 & -1 \\ 8 & 2 \end{bmatrix}\][/tex][tex]\[\begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\\\ -1 & \frac{-1}{2}\end{bmatrix}\][/tex][tex]$ = $[/tex] [tex]\[\begin{bmatrix}\frac{1}{2} & 0 \\0 & 0 \end{bmatrix}\][/tex]

This is clearly not equal to the identity matrix. So we conclude that the matrices are not inverses of each other.