Answer:
(a). The thickness of the glass is 868 nm.
(b). The wavelength is 3472 nm.
Explanation:
Given that,
Refractive index = 1.20
Wavelength = 496 nm
Next wavelength = 386 nm
We need to calculate the thickness of the glass
Using formula for constructive interference
[tex]2nt=(m+\dfrac{1}{2})\lambda[/tex]
Put the value into the formula
In first case,
[tex]2nt=(m+\dfrac{1}{2})496[/tex].....(I)
In second case,
[tex]2nt=(m+1+\dfrac{1}{2})386[/tex]
[tex]2nt=(m+\dfrac{3}{2})386[/tex].....(II)
From equation (I) and (II)
[tex](m+\dfrac{1}{2})496=(m+\dfrac{3}{2})386[/tex]
[tex] 110m=336[/tex]
[tex]m=3.0[/tex]
Put the value of m in equation (I)
[tex]2nt=(2+\dfrac{1}{2})496[/tex]
[tex]t=\dfrac{(3+\dfrac{1}{2})496}{2\times1}[/tex]
[tex]t=868\ nm[/tex]
The thickness of the glass is 868 nm.
(b). We need to calculate the wavelength
Using formula of constructive interference
[tex]2nt=(m+\dfrac{1}{2})\lambda[/tex]
[tex]\lambda=\dfrac{2nt}{(m+\dfrac{1}{2})}[/tex]
Put the value into the formula
[tex]\lambda=\dfrac{2\times1\times868}{\dfrac{1}{2}}[/tex]
[tex]\lambda=3472\ nm[/tex]
Hence, (a). The thickness of the glass is 868 nm.
(b). The wavelength is 3472 nm.