Answer:
l = 4.33 m
Explanation:
given,
mass of solid sphere = 390 gram = 0.39 kg
radius = R = 19 cm = 0.19 m
rolling with constant speed = 4 m/s
angle with horizontal = 15°
acceleration due to gravity = 10 m/s²
using energy conservation
[tex]\dfrac{1}{2}I\omega^2 + \dfrac{1}{2}mv^2 = mgh[/tex]
I for sphere
[tex]I = \dfrac{2}{5}mr^2[/tex] v = r ω
[tex]\dfrac{1}{2}\ \dfrac{2}{5}mr^2\times \dfrac{v^2}{r^2} + \dfrac{1}{2}mv^2 = mgh[/tex]
[tex]\dfrac{7}{10}mv^2 = mgh[/tex]
[tex]h = \dfrac{0.7 v^2}{g}[/tex]
[tex]h = \dfrac{0.7\times 4^2}{10}[/tex]
h = 1.12 m
[tex]l=\dfrac{h}{sin 15^0}[/tex]
[tex]l=\dfrac{1.12}{sin 15^0}[/tex]
l = 4.33 m
the sphere will travel 4.33 m on the ramp.