Respuesta :

Space

Answer:

[tex]\displaystyle \frac{dy}{dx} = \frac{-4}{(2x - 1)^3}[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Derivative Property [Addition/Subtraction]:                                                         [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                 [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle y = \frac{1}{(2x - 1)^2}[/tex]

Step 2: Differentiate

  1. Rewrite:                                                                                                          [tex]\displaystyle y = (2x - 1)^{-2}[/tex]
  2. Basic Power Rule [Derivative Rule - Chain Rule]:                                       [tex]\displaystyle y' = -2(2x - 1)^{-3}(2x - 1)'[/tex]
  3. Basic Power Rule [Derivative Properties]:                                                   [tex]\displaystyle y' = -4(2x - 1)^{-3}[/tex]
  4. Rewrite:                                                                                                         [tex]\displaystyle y' = \frac{-4}{(2x - 1)^3}[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation