Answer:
[tex]15x^7y^5[/tex]
Step-by-step explanation:
Given
[tex]5x^3y^2\times 3x^4y^3[/tex]
Rewrite it as
[tex](5\cdot 3)\times (x^3\cdot x^4)\times (y^2\cdot y^3)[/tex]
Use power property:
[tex]a^m\cdot a^n=a^{m+n},[/tex]
so
[tex]x^3\cdot x^4=x^{3+4}=x^7\\ \\y^2\cdot y^3=y^{2+3}=y^5[/tex]
Then
[tex](5\cdot 3)\times (x^3\cdot x^4)\times (y^2\cdot y^3)=15\times x^7\times y^5=15x^7y^5[/tex]