Answer:
(-1, 5)
(0, 3)
(2, -1)
Step-by-step explanation:
we have
[tex]f(x)=3-2x[/tex]
Remember that
If a ordered pair is a solution of the given function, then the ordered pair must satisfy the given function
Verify each case
case a) (-2, -1)
substitute the value of x and the value of y in the given function and compare the result
[tex]-1=3-2(-2)[/tex]
[tex]-1=7[/tex] ---> is not true
therefore
Is not a ordered pair of the given function
case b) (-1, 5)
substitute the value of x and the value of y in the given function and compare the result
[tex]5=3-2(-1)[/tex]
[tex]5=5[/tex] ---> is true
therefore
Is a ordered pair of the given function
case c) (0, 3)
substitute the value of x and the value of y in the given function and compare the result
[tex]3=3-2(0)[/tex]
[tex]3=3[/tex] ---> is true
therefore
Is a ordered pair of the given function
case d) (1,0)
substitute the value of x and the value of y in the given function and compare the result
[tex]0=3-2(1)[/tex]
[tex]0=1[/tex] ---> is not true
therefore
Is not a ordered pair of the given function
case e) (2, -1)
substitute the value of x and the value of y in the given function and compare the result
[tex]-1=3-2(2)[/tex]
[tex]-1=-1[/tex] ---> is true
therefore
Is a ordered pair of the given function