Respuesta :

Answer:

(-1, 5)

(0, 3)

(2, -1)

Step-by-step explanation:

we have

[tex]f(x)=3-2x[/tex]

Remember that

If a ordered pair is a solution of the given function, then the ordered pair must satisfy the given function

Verify each case

case a) (-2, -1)

substitute the value of x and the value of y in the given function and compare the result

[tex]-1=3-2(-2)[/tex]

[tex]-1=7[/tex] ---> is not true

therefore

Is not a ordered pair of the given function

case b) (-1, 5)

substitute the value of x and the value of y in the given function and compare the result

[tex]5=3-2(-1)[/tex]

[tex]5=5[/tex] ---> is true

therefore

Is a ordered pair of the given function

case c) (0, 3)

substitute the value of x and the value of y in the given function and compare the result

[tex]3=3-2(0)[/tex]

[tex]3=3[/tex] ---> is  true

therefore

Is a ordered pair of the given function

case d) (1,0)

substitute the value of x and the value of y in the given function and compare the result

[tex]0=3-2(1)[/tex]

[tex]0=1[/tex] ---> is not true

therefore

Is not a ordered pair of the given function

case e) (2, -1)

substitute the value of x and the value of y in the given function and compare the result

[tex]-1=3-2(2)[/tex]

[tex]-1=-1[/tex] ---> is true

therefore

Is a ordered pair of the given function