Respuesta :
Answer:
(2, 120° )
Step-by-step explanation:
To convert from rectangular to polar form, that is
(x, y) → (r, Θ ), use
r = [tex]\sqrt{x^2+y^2}[/tex]
Θ = [tex]tan^{-1}[/tex]( [tex]\frac{y}{x}[/tex])
here (x, y ) = (- 1, [tex]\sqrt{3}[/tex])
r = [tex]\sqrt{(-1)^2+(\sqrt{3} }[/tex] )^2
= [tex]\sqrt{1+3}[/tex] = [tex]\sqrt{4}[/tex] = 2
Θ = [tex]tan^{-1}[/tex]([tex]\sqrt{3}[/tex]) = 60° ← related acute angle
Note (- 1, [tex]\sqrt{3}[/tex]) is in the second quadrant so Θ must be in the second quadrant.
Θ = 180° - 60° = 120°
(- 1, [tex]\sqrt{3}[/tex]) → (2, 120°)
Answer:
Step-by-step explanation:
Answer:
Step-by-step explanation:
The polar form of a Cartesian coordinates is given by (r, @) where r = √x^2 + y^2
@ = tan^-1 y/x
r = √-1^2 + √3^2
r = √4
r= 2
@ = tan ^-1 √3/-1 -tan √3/1 = -60°
@ = 180-60 = 120°