Respuesta :

gmany

Answer:

[tex]\large\boxed{\log_6\dfrac{1}{36}=-2}[/tex]

Step-by-step explanation:

[tex]\text{We know:}\\\\\log_ab=c\iff a^c=b\\\\\log_6\dfrac{1}{36}\qquad\text{use}\ a^{-1}=\dfrac{1}{a}\\\\=\log_636^{-1}=\log_6(6^2)^{-1}\qquad\text{use}\ (a^n)^m=a^{nm}\\\\=\log_66^{(2)(-1)}=\log_66^{-2}\qquad\text{use}\log_ab^n=n\log_ab\\\\=-2\log_66\qquad\text{use}\ \log_aa=1\\\\=-2(1)=-2[/tex]

[tex]\log_6\dfrac{1}{36}=-2\ \text{because}\ 6^{-2}=\dfrac{1}{6^2}=\dfrac{1}{36}[/tex]