Answer: t = 1.9287
Step-by-step explanation:
Let [tex]\mu[/tex] be the average number of pages should be sent by 2-day mail instead.
As per given we have,
[tex]H_0: \mu \leq7\\\\H_a:\mu>7[/tex]
Sample mean : [tex]\overline{x}=8.52[/tex]
Sample standard deviation : s=3.81
sample size : n= 24
Since , the sample size is less than 30 and populations standard deviation is unknown , so we use t-test.
The test statistic for population mean :-
[tex]t=\dfrac{\overline{x}-\mu}{\dfrac{s}{\sqrt{n}}}[/tex]
[tex]t=\dfrac{8.5-7}{\dfrac{3.81}{\sqrt{24}}}\\\\=\dfrac{1.5}{\dfrac{3.81}{4.8990}}\\\\=\dfrac{1.5}{0.777712993333}=1.92873208093\approx1.9287[/tex]
Hence, the test statistics : t = 1.9287