we must apply a force of magnitude 83 N to hold the block stationary at x = −2.0 cm. From that position we then slowly move the block so that our force does +4.8 J of work on the spring-block system; the block is then again stationary. What is the block's position x? (There are two answers.)

Respuesta :

The concept required to develop this problem is Hook's Law and potential elastic energy.

By definition the force by Hooke's law is defined as

[tex]F = kx[/tex]

Where,

k = Spring Constant

x = Displacement

On the other hand, the elastic potential energy is defined as

[tex]E = \frac{1}{2} k\Delta x^2[/tex]

With the given values we can find the value of the spring constant, that is,

[tex]F = kx[/tex]

[tex]k=\frac{F}{x}[/tex]

[tex]k= \frac{83}{0.02}[/tex]

[tex]k = 4120N/m[/tex]

Applying the concepts of energy conservation then we can find the position of the block, that is,

[tex]E = \frac{1}{2} k\Delta x^2[/tex]

[tex]E = \frac{1}{2} k\Delta x^2[/tex]

[tex]4.8 = \frac{1}{2} (4120)(x^2-(-0.02)^2)[/tex]

[tex]x = \sqrt{\frac{2*4.8}{4120}+(-0.02)^2}[/tex]

[tex]x = \pm 0.05225m[/tex]

Therefore the position of the block can be then,

[tex]x_1 = 5.225cm[/tex]

[tex]x_2 = -5.225cm[/tex]