Respuesta :

znk

Answer:

[tex]\large \boxed{\text{7.94 g/mol}}[/tex]

Explanation:

We can use the Ideal Gas Law to solve this problem

pV = nRT

Data:

p = 0.998 atm

V = 0.153 L

T = 26 °C

m = 0.0494 g

1.  Convert temperature to kelvins

T = (26 + 273.15) K =  299.15 K

2. Calculate the number of moles

[tex]\text{0.998 atm} \times\text{0.153 L} = n \times \text{0.082 06 L}\cdot\text{atm}\cdot\text{K}^{-1}\text{mol}^{-1}\times \text{299.15 K}\\\\0.1527 = n \times \text{24.55 mol}^{-1}\\\\n = \dfrac{0.1527}{\text{24.55 mol}^{-1}} = 6.220 \times 10^{-3} \text{ mol}[/tex]

3. Calculate the molar mass

[tex]\text{Molar mass} = \dfrac{\text{mass}}{\text{moles}}\\\\M = \dfrac{m}{n}\\\\M = \dfrac{\text{0.0494 g}}{6.220 \times 10^{-3} \text{ mol}}\\\\M = \textbf{7.94 g/mol}\\\text{The molar mass of the gas is } \large \boxed{\textbf{7.94 g/mol}}[/tex]