Answer:
[tex]\frac{\pi}{2}[/tex] and [tex]\frac{3\pi}{2}[/tex].
Step-by-step explanation:
We have been given an equation [tex]4\text{cos}(x)=-\text{sin}^{2}(x)+1[/tex]. We are asked to find all the solutions of our given equation on interval [tex][0,2\pi][/tex] in radians in terms of pi.
Let us solve our given equation using property [tex]\text{sin}^{2}(x)=1-\text{cos}^{2}(x)[/tex].
[tex]4\text{cos}(x)=-\text{sin}^{2}(x)+1[/tex]
[tex]4\text{cos}(x)=-(1-\text{cos}^{2}(x))+1[/tex]
[tex]4\text{cos}(x)=-1+\text{cos}^{2}(x)+1[/tex]
[tex]4\text{cos}(x)=\text{cos}^{2}(x)[/tex]
Subtract [tex]\text{cos}^{2}(x)[/tex] from both sides:
[tex]4\text{cos}(x)-\text{cos}^{2}(x)=0[/tex]
Upon factoring out our equation, we will get:
[tex]\text{cos}(x)(4-\text{cos}(x))=0[/tex]
Using zero product property, we will get:
[tex]\text{cos}(x)=0\text{ (or) }(4-\text{cos}(x))=0[/tex]
[tex]\text{cos}(x)=0\text{ (or) }\text{cos}(x)=4[/tex]
We know that cosine function oscillates between -1 and 1, therefore, there is no solution for [tex]\text{cos}(x)=4[/tex].
We also know that [tex]cos(x)=0[/tex] at [tex]\frac{\pi}{2}[/tex] and [tex]\frac{3\pi}{2}[/tex]. Therefore, the general solution for our given equation would be [tex]\frac{\pi}{2}+2\pi n[/tex] and [tex]\frac{3\pi}{2}+2\pi n[/tex].
Since we need our solution on interval [tex]\frac{\pi}{2}[/tex] and [tex]\frac{3\pi}{2}[/tex], so we can only use [tex]n=0[/tex] for both solutions. If we will use [tex]n=1[/tex], then we will be adding 2 pi to each [tex]\frac{\pi}{2}[/tex] and [tex]\frac{3\pi}{2}[/tex], which will be out of our boundaries.
Therefore, the solution for our equation is [tex]\frac{\pi}{2}[/tex] and [tex]\frac{3\pi}{2}[/tex].