Respuesta :

Answer:

The value remains the same.

Step-by-step explanation:

using the expression: [tex](x + 1)^{2}[/tex],

where x = 2

substitute for x in the expression;

[tex](2 + 1)^{2}[/tex]

= [tex](3)^{2}[/tex]

=9          

The value of the expression before expansion = 9

Lets expand the expression:  [tex](x + 1)^{2}[/tex]

= (x + 1) (x + 1)

= [tex]x^{2}[/tex] + 2x + 1

substitute for x in the expression

= [tex]2^{2}[/tex] + 2(2) + 1

= 4 + 4 + 1              = 9

The value of the expansion after expansion = 9

The value remains the same before and after expansion.

The value of an expression, before and when it is expanded will be always same.

Let us consider that an expression,

                        [tex]f(x)=(x-1)^{2}[/tex]

Substitute x = 2 in above relation.

                   [tex]f(2)=(2-1)^{2}=1[/tex]

Now expand,

                        [tex]f(x)=(x-1)^{2}=x^{2} -2x+1\\\\f(2)=2^{2}-2*2+1\\\\f(2)=4-4+1\\\\f(2)=1[/tex]

Hence, the value of an expression, before and when it is expanded will be always same.

Learn more:

https://brainly.com/question/13315725