Respuesta :

Answer:

AY = 10 cm.

Step-by-step explanation:

Given that, ΔABC is similar to ΔAXY

and [tex]\frac{AB}{AX }  = \frac{5}{3}[/tex]

⇒  [tex]\frac{AC}{AY }  =  [tex]\frac{BC}{XY } = \frac{5}{3}[/tex]

⇒ BC = XY× \frac{5}{3}[/tex] =  \frac{20}{3}[/tex] (as XY = 4 cm given)

Now, check the attached figure,

given, BY bisects ∠XYC

let ∠XYB = ∠BYC = x

⇒ ∠AYX = 180-2x (angle on a straight line)

and also ∠AYX = ACB (similar triangle properties)

⇒ ∠ACB = 180-2x

Now, sum of angles in ΔBYC = 180°

⇒ ∠YBC = x

BC = YC (as two sides of equal angles are equal in a triangle)

⇒ YC =  \frac{20}{3}[/tex]

And also [tex]\frac{AC}{AY }  = \frac{5}{3}[/tex]

AC = AY + YC

⇒ [tex]\frac{AY+YC}{AY }  = \frac{5}{3}[/tex]

⇒ [tex]\frac{AY+\frac{20}{3}[/tex]}{AY }  = \frac{5}{3}[/tex]

⇒ 5AY = 3AY + 20

⇒ AY = 10 cm

Ver imagen babundra210