Respuesta :

Answer:

[tex]AB=9.02\ units[/tex]

[tex]BC=7.45\ units[/tex]

Step-by-step explanation:

see the attached figure to better understand the problem

Remember that in a parallelogram opposites sides are parallel and congruent, opposites angles are congruent and consecutive angles are supplementary

step 1

Find the measure of angle ACB

we have

[tex]m\angle BAC=22^o[/tex] ----> given problem

[tex]m\angle ACB=m\angle DAC[/tex] ----> by alternate interior angles

[tex]m\angle DAC=27^o[/tex] ----> given problem

so

[tex]m\angle ACB=27^o[/tex]

step 2

Find the measure of angle ABC

The sum of the interior angles in any triangle must be equal to 180 degrees

In the triangle ABC of the figure

[tex]m\angle BAC+m\angle ACB+m\angle ABC=180^o[/tex]

substitute the given values

[tex]22^o+27^o+m\angle ABC=180^o[/tex]

[tex]49^o+m\angle ABC=180^o[/tex]

[tex]m\angle ABC=180^o-49^o[/tex]

[tex]m\angle ABC=131^o[/tex]

step 3

Find the length side AB

In the triangle ABC

Applying the law of sines

[tex]\frac{AC}{sin(ABC)}=\frac{AB}{sin(ACB)}[/tex]

substitute the given values

[tex]\frac{15}{sin(131^o)}=\frac{AB}{sin(27^o)}[/tex]

[tex]AB=\frac{15}{sin(131^o)}(sin(27^o))[/tex]

[tex]AB=9.02\ units[/tex]

step 4

Find the length side BC

In the triangle ABC

Applying the law of sines

[tex]\frac{AC}{sin(ABC)}=\frac{BC}{sin(BAC)}[/tex]

substitute the given values

[tex]\frac{15}{sin(131^o)}=\frac{BC}{sin(22^o)}[/tex]

[tex]BC=\frac{15}{sin(131^o)}(sin(22^o))[/tex]

[tex]BC=7.45\ units[/tex]

Ver imagen calculista