Respuesta :

f(x) = 7 is a even function

Solution:

Given that we have to find the even function

A function is even if and only if f(–x) = f(x)

Steps to follow:

Replace x with -x and compare the result to f(x). If f(-x) = f(x), the function is even.

If f(-x) = - f(x), the function is odd.

If f(-x) ≠ f(x) and f(-x) ≠ -f(x), the function is neither even nor odd.

Option 1

[tex]f(x) = (x - 1)^2[/tex]

Substitute x = -x in above function

[tex]f(-x) = (-x - 1)^2[/tex]

Thus [tex]f(-x) \neq f(x)[/tex]

So this is not a even function

Option 2

f(x) = 8x

Substitute x = -x in above function

f(-x) = 8(-x) = -8x

Thus [tex]f(-x) \neq f(x)[/tex]

So this is not a even function

Option 3

[tex]f(x) = x^2 - x[/tex]

Substitute x = -x in above function

[tex]f(-x) = (-x)^2 - (-x) = x^2 + x[/tex]

Thus [tex]f(-x) \neq f(x)[/tex]

So this is not a even function

Option 4

f(x) = 7

f(-x) = 7

Thus f(-x) = f(x)

Thus it is a even function

Answer:

A

Step-by-step explanation:

edg verified