Respuesta :

Answer: (-2,5)

Step 1: Rewrite equations

-3x+2y=16

x-2y=-12

Step 2: Changing the second equation

With substitution, you have to already have the equation to solve for the specific variable (ex: x=y+1;y=x+1). Since the equation doesn’t give us one, we can flip the second equation to give us this.

Let’s add 2y on both sides.

x-2y=-12
+2y +2y
_________
x=2y-12

Now we have the equation to solve for x!

Step 3: Substituting

Now we need to substitute x into the first equation. Let’s do this now.

-3(2y-12)+2y=16

Step 4: Solving for y

-3(2y-12)+2y=16

*distribute*

-6y+36+2y=16

*combine like terms*

-4y+36=16

*subtract 36 on both sides*

-4y=-20

*divide both numbers by -4*

y=5

This is y! Now we need to solve for x.

Step 5: Solving for x

To find x, let’s just substitute y into the equation and solve

x=2y-12

x=2(5)-12

x=10-12

x=-2

Step 6: Ordered pair

(X,y) —> (-2,5)


This is your answer! Hope this helps comment below for more questions :)

Answer:

For the given equations the values of x and y by using substitution method are  [tex]x=1[/tex]  and [tex]y=\frac{13}{2}[/tex]

Step-by-step explanation:

Given system of equations are

[tex]-3x+2y=16\hfill (1)[/tex]

[tex]x-2y=-12\hfill (2)[/tex]

Solve the given equations by substitution method:

Now (2) implies

[tex]x-2y=-12[/tex]

[tex]x=-12+2y\hfill (3)[/tex]

Now substitute the x value in equation (1)

[tex]-3x+2y=16[/tex]

[tex]-3(-12+2y)+2y=16[/tex]

[tex]36-6y+2y=16[/tex]

[tex]36-4y=16[/tex]

[tex]-4y=16-36[/tex]

[tex]y=-(\frac{-26}{4})[/tex]

[tex]y=\frac{26}{4}[/tex]

Therefore  [tex]y=\frac{13}{2}[/tex]

Now substitute the y value in equation (3)

[tex]x=-12+2y[/tex]

[tex]x=-12+2\times \frac{13}{2}[/tex]

[tex]x=-12+13[/tex]

[tex]x=1[/tex]

Therefore [tex]x=1[/tex]  and [tex]y=\frac{13}{2}[/tex]