Respuesta :

Answer:

Part A) [tex]sin(A)=\frac{\sqrt{5}}{5}[/tex]

Part B) [tex]tan(B)=2[/tex]

Part C) [tex]sec(A)=\frac{\sqrt{5}}{2}[/tex]

Step-by-step explanation:

see the attached figure to better understand the problem

step 1

Find the length side AB (hypotenuse of the right triangle)

Applying the Pythagorean Theorem

[tex]AB^2=BC^2+AC^2[/tex]

substitute the given values

[tex]AB^2=4^2+8^2[/tex]

[tex]AB^2=80[/tex]

[tex]AB=\sqrt{80}\ units[/tex]

simplify

[tex]AB=4\sqrt{5}\ units[/tex]

step 2

Find sin(A)

we know that

In the right triangle ABC

[tex]sin(A)=\frac{BC}{AB}[/tex] ----> by SOH (opposite side divided by the hypotenuse)

substitute the given values

[tex]sin(A)=\frac{4}{4\sqrt{5}}=\frac{\sqrt{5}}{5}[/tex]

step 3

Find tan(B)

we know that

[tex]tan(B)=\frac{AC}{BC}[/tex] ----> by TOA (opposite side divided by adjacent side)

substitute the values

[tex]tan(B)=\frac{8}{4}=2[/tex]

step 4

Find sec(A)

we know that

[tex]sec(A)=\frac{1}{cos(A)}[/tex]

[tex]cos(A)=\frac{AC}{AB}[/tex] ----> by CAH

so

[tex]sec(A)=\frac{AB}{AC}[/tex]

substitute the values

[tex]sec(A)=\frac{4\sqrt{5}}{8}[/tex]

simplify

[tex]sec(A)=\frac{\sqrt{5}}{2}[/tex]

Ver imagen calculista