Respuesta :

Answer:

[tex]arc\ RF=80^o[/tex]

Step-by-step explanation:

we know that

The inscribed angle is half that of the arc it comprises.

step 1

Find the measure of the arc PQR

[tex]109^o=\frac{1}{2}[arc\ PQR][/tex]

[tex]arc\ PQR=218^o[/tex]

step 2

Find the measure of arc QR

[tex]arc\ PQR=arc\ PQ+arc\ QR[/tex]

we have

[tex]arc\ PQR=218^o[/tex]

[tex]arc\ PQ=74^o[/tex]

substitute

[tex]218^o=74^o+arc\ QR[/tex]

[tex]arc\ QR=144^o[/tex]

step 3

Find the measure of the arc QRF

[tex]112^o=\frac{1}{2}[arc\ QRF][/tex]

[tex]arc\ QRF=224^o[/tex]

step 4

Find the measure of arc RF

[tex]arc\ QRF=arc\ QR+arc\ RF[/tex]

we have

[tex]arc\ QRF=224^o[/tex]

[tex]arc\ QR=144^o[/tex]

substitute

[tex]224^o=144^o+arc\ RF[/tex]

[tex]arc\ RF=80^o[/tex]