Respuesta :
Answer:
Part 1) [tex]x=14\sqrt{2}\ units[/tex]
Part 2) [tex]y=14\ units[/tex]
Part 3) [tex]z=14\sqrt{3}\ units[/tex]
Step-by-step explanation:
see the attached figure with letters to better understand the problem
step 1
In the right triangle ABC
we know that
The triangle ABC is a [tex]45^o-90^o-45^o[/tex]
so
Is an isosceles right triangle
The legs are equal
therefore
AC=AB
[tex]x=14\sqrt{2}\ units[/tex]
step 2
Find the length side BC
Applying the Pythagorean Theorem]
[tex]BC^2=AB^2+AC^2[/tex]
[tex]BC^2=(14\sqrt{2})^2+(14\sqrt{2})^2[/tex]
[tex]BC^2=784\\BC=28\ units[/tex]
step 3
Find the value of y
In the right triangle BCD
[tex]sin(30^o)=\frac{BD}{BC}[/tex] ----> by SOH (opposite side divided by the hypotenuse)
[tex]sin(30^o)=\frac{y}{28}[/tex]
Remember that
[tex]sin(30^o)=\frac{1}{2}[/tex]
so
[tex]\frac{y}{28}=\frac{1}{2}\\\\y=14\ units[/tex]
step 4
Find the value of z
In the right triangle BCD
[tex]cos(30^o)=\frac{DC}{BC}[/tex] ----> by CAH (adjacent side divided by the hypotenuse)
[tex]cos(30^o)=\frac{z}{28}[/tex]
Remember that
[tex]cos(30^o)=\frac{\sqrt{3}}{2}[/tex]
so
[tex]\frac{z}{28}=\frac{\sqrt{3}}{2}\\z=14\sqrt{3}\ units[/tex]
The value of x, y, and z is [tex]14\sqrt2,14,\rm\; and \;14\sqrt3[/tex], respectively.
Given information:
From the given figure, the following information can be extracted:
- The upper right triangle has angles 45, 45, and 90 degrees.
- One leg of the upper triangle is [tex]14\sqrt2[/tex]. So, the other leg will also be [tex]14\sqrt2[/tex].
- The lower right triangle has angles 30, 60, and 90 degrees.
Use Pythagoras theorem for upper triangle to get the value of hypotenuse as,
[tex]h^2=(14\sqrt2)^2+(14\sqrt2)\\h=28[/tex]
So, the value of x is [tex]14\sqrt2[/tex] and the hypotenuse is 28 units.
Now, for lower triangle,
[tex]sin30=\dfrac{y}{28}\\\dfrac{1}{2}=\dfrac{y}{28}\\y=14\\cos30=\dfrac{z}{28}\\\dfrac{\sqrt3}{2}=\dfrac{z}{28}\\z=14\sqrt3[/tex]
Therefore, the value of x, y, and z is [tex]14\sqrt2,14,\rm\; and \;14\sqrt3[/tex], respectively.
For more details, refer to the link:
https://brainly.com/question/15894165