Answer:
1) The correct answer is option b.
2) The correct answer is option a.
Explanation:
1)
[tex]X+Y\rightleftharpoons Z[/tex]
At 300 K, the value of the [tex]K_p=1.00[/tex]
The [tex]K_c[/tex] and [tex]K_p[/tex] is related by :
[tex]K_p=K_c\times (RT)^{\Delta n}[/tex]
where,
[tex]K_p[/tex] = equilibrium constant at constant pressure
[tex]K_c[/tex] = equilibrium concentration constant
R = gas constant = 0.0821 L⋅atm/(K⋅mol)
T = temperature = 300 K
[tex]\Delta n[/tex] = change in the number of moles of gas = 1 - 2 = -1
Now put all the given values in the above relation, we get:
[tex]1.00=K_c\times (0.0821 L atm/(K mol)\times 300)^{-1}[/tex]
[tex]K_c=24.63[/tex]
The [tex]K_c[/tex] of the reaction = 24.63
Given = [X] = [Y] = [Z] = 1.0 M
Value of reaction quotient = Q
[tex]Q=\frac{[Z]}{[X][Y]}=\frac{1.0 M}{1.0M\times 1.0 M}=1[/tex]
[tex]Q<K_c[/tex], the equilibrium will move in forward direction that is in the right direction.
2)
[tex]X+Y\rightleftharpoons Z[/tex]
At 300 K, the value of the [tex]K_p=1.00[/tex]
Given = [tex]P_x = P_z = 1.0 atm, P_y = 0.50 atm[/tex]
Value of reaction quotient in terms of partial pressure = [tex]Q_p[/tex]
[tex]Q_p=\frac{P_z}{P_x\times P_y}=\frac{1.0 atm}{1.0 atm\times 0.50 atm}[/tex]
[tex]Q_p=2[/tex]
[tex]Q_p>K_p[/tex]the equilibrium will move in backword direction that is in the left direction.