Water is contained in a rigid vessel of 5 m3 at a quality of 0.8 and a pressure of 1 MPa. If the pressure is reduced to 270.3 kPa by cooling the vessel, find the final quality of the water in the tank and calculate the final mass of vapor and mass of liquid in kg.

Respuesta :

Answer:

russ ruwabsd ljabnlndszdnjndfsmsdf,bsd

Explanation:

The final mass of water vapor is "7.445 Kg" and liquid vapor is "24.665 Kg".

From the saturated water pressure,

At P = 1 MPa,

  • [tex]V_f = 0.001127 \ m^2/Kg[/tex]
  • [tex]V_g = 0.19436 \ m^3/Kg[/tex]

→ [tex]V_1 = V_f +x(V_g-V_f)[/tex]

       [tex]= 0.001127+0.8(0.19436-0.00127)[/tex]

       [tex]= 0.15571 \ m^3/Kg[/tex]

When the cylinder is rigid, then

→ [tex]V_1=V_2= 0.15571 \ m^3/Kg[/tex]

From the saturated water pressure,

At P₂ = 270.3 KPg,

  • [tex]V_{f2} = 0.00107 \ m^3/Kg[/tex]
  • [tex]V_{g2} = 0.668 \ m^3/Kg[/tex]

→       [tex]V_2 = V_{f2}+x_2(V_{g2}-V_{f2})[/tex]

[tex]0.15571=0.00107+x_2 (0.668-0.00107)[/tex]      

        [tex]x_2 = 0.23186[/tex]

As we know,

→ [tex]m = \frac{V}{v}[/tex]

       [tex]= \frac{5}{0.15571}[/tex]

       [tex]= 32.1109 \ Kg[/tex]

hence,

→ The final mass of water vapor will be:

= [tex]x_2m[/tex]

= [tex]0.23186\times 32.11[/tex]

= [tex]7.445 \ Kg[/tex]

→ The final mass of liquid vapor will be:

= [tex]m-m_v[/tex]

= [tex]32.1109-7.445[/tex]

= [tex]24.665 \ Kg[/tex]

Thus the above answer is correct.

Learn more:

https://brainly.com/question/23612893