Respuesta :

Therefore the sixth term in the binomial expansion is[tex]=-{10}C_5(2a)^{5} (3b)^5[/tex]

Step-by-step explanation:

Given

[tex](2a -3b)^{10}[/tex]

[tex]=^{10}C_0 (2a)^{10} + ^{10}C_1(2a)^9(-3b)+^{10}C_2(2a)^8(-3b)^2+...............+^{10}C_10(-3b)^{10}[/tex]

So,

[tex]T_{n+1}= ^{10}C_n(2a)^{(10-n)} (-3b)^n[/tex]

[tex]T_6=T_{(5+1)} =^{10}C_5(2a)^{10-5} (-3b)^5[/tex]

Therefore the sixth term in the binomial expansion is= [tex]{10}C_5(2a)^{10-5} (-3b)^5[/tex]

                                                                                         [tex]=-{10}C_5(2a)^{5} (3b)^5[/tex]

Answer:

Answer is A. 10C^5(2a)^5(-3b)^5

Step-by-step explanation: