The logistic equation for the population​ (in thousands) of a certain species is given by:

dp/dt= 3p- 2p²

a. Sketch the direction field by using either a computer software package or the method of isoclines.
b. If the initial population is 3000 [that is, p(0) = 3], what can you say about the limiting population lim t →+[infinity] p(t)?
c. If p(0) = 0.8, what is lim t →+[infinity] p(t)?
d. Can a population of 2000 ever decline to 800?

Respuesta :

Answer:

a.

b. 1.5

c. 1.5

d. No

Step-by-step explanation:

a. First, let's solve the differential equation:

[tex]\frac{dp}{dt} =3p-2p^2[/tex]

Divide both sides by [tex]3p-2p^2[/tex]  and multiply both sides by dt:

[tex]\frac{dp}{3p-2p^2}=dt[/tex]

Integrate both sides:

[tex]\int\ \frac{1}{3p-2p^2} dp =\int\ dt[/tex]

Evaluate the integrals and simplify:

[tex]p(t)=\frac{3e^{3t} }{C_1+2e^{3t}}[/tex]

Where C1 is an arbitrary constant

I sketched the direction field using a computer software. You can see it in the picture that I attached you.

b. First let's find the constant C1 for the initial condition given:

[tex]p(0)=3=\frac{3e^{0} }{C_1+2e^{0} } =\frac{3}{C_1+2}[/tex]

Solving for C1:

[tex]C_1=-1[/tex]

Now, let's evaluate the limit:

[tex]\lim_{t \to \infty} \frac{3e^{3t} }{2e^{3t}-1 } \\\\Divide\hspace{3}the\hspace{3}numerator\hspace{3}and\hspace{3}denominator\hspace{3}by\hspace{3}e^{3t} \\\\ \lim_{t \to \infty} \frac{3 }{2-e^{-3x} }[/tex]

The expression [tex]-e^{-3x}[/tex] tends to zero as x approaches ∞ . Hence:

[tex]\lim_{t \to \infty} \frac{3e^{3t} }{2e^{3t}-1 } =\frac{3}{2} =1.5[/tex]

c. As we did before, let's find the constant C1 for the initial condition given:

[tex]p(0)=0.8=\frac{3e^{0} }{C_1+2e^{0} } =\frac{3}{C_1+2}[/tex]

Solving for C1:

[tex]C_1=1.75[/tex]

Now, let's evaluate the limit:

[tex]\lim_{t \to \infty} \frac{3e^{3t} }{2e^{3t}+1.75 } \\\\Divide\hspace{3}the\hspace{3}numerator\hspace{3}and\hspace{3}denominator\hspace{3}by\hspace{3}e^{3t} \\\\ \lim_{t \to \infty} \frac{3 }{2+1.75e^{-3x} }[/tex]

The expression [tex]-e^{-3x}[/tex] tends to zero as x approaches ∞ . Hence:

[tex]\lim_{t \to \infty} \frac{3e^{3t} }{2e^{3t}+1.75 } =\frac{3}{2} =1.5[/tex]

d. To figure out that, we need to do the same procedure as we did before. So,  let's find the constant C1 for the initial condition given:

[tex]p(0)=2=\frac{3e^{0} }{C_1+2e^{0} } =\frac{3}{C_1+2}[/tex]

Solving for C1:

[tex]C_1=-\frac{1}{2} =-0.5[/tex]

Can a population of 2000 ever decline to 800? well, let's find the limit of the function when it approaches to ∞:

[tex]\lim_{t \to \infty} \frac{3e^{3t} }{2e^{3t}-0.5 } \\\\Divide\hspace{3}the\hspace{3}numerator\hspace{3}and\hspace{3}denominator\hspace{3}by\hspace{3}e^{3t} \\\\ \lim_{t \to \infty} \frac{3 }{2-0.5e^{-3x} }[/tex]

The expression [tex]-e^{-3x}[/tex] tends to zero as x approaches ∞ . Hence:

[tex]\lim_{t \to \infty} \frac{3e^{3t} }{2e^{3t}-0.5 } =\frac{3}{2} =1.5[/tex]

Therefore, a population of 2000 never will decline to 800.

Ver imagen carlos2112