Answer:
E = 80.381 GPa
Explanation:
given,
Distance between two gauges, L = 320 mm
diameter,d = 12 mm
Load, P = 15 x 10³ N
distance between gauge marks = 320.5280 mm
Now, elongation of rod is equal to
δ = 320.5280 - 320 = 0.5280 mm
Using elongation formula
[tex]\delta = \dfrac{PL}{AE}[/tex]
[tex]E = \dfrac{PL}{A\delta}[/tex]
[tex]E = \dfrac{15\times 10^3\times 320}{\dfrac{\pi}{4}\times d^2\times 0.5280}[/tex]
[tex]E = \dfrac{15\times 10^3\times 320}{\dfrac{\pi}{4}\times 12^2\times 0.5280}[/tex]
E = 80381.28 MPa
E = 80.381 x 10³ MPa
E = 80.381 GPa
Hence, Modulus of elasticity of the metal is equal to E = 80.381 GPa