Respuesta :
Answer:
a)906.5 Nm^2/C
b) 0
c) 742.56132 N•m^2/C
Explanation:
a) The plane is parallel to the yz-plane.
We know that
flux ∅= EAcosθ
3.7×1000×0.350×0.700=906.5 N•m^2/C
(b) The plane is parallel to the xy-plane.
here theta = 90 degree
therefore,
0 N•m^2/C
(c) The plane contains the y-axis, and its normal makes an angle of 35.0° with the x-axis.
therefore, applying the flux formula we get
3.7×1000×0.3500×0.700×cos35°= 742.56132 N•m^2/C
Answer:
a) [tex]906.5\ N .m^2/C[/tex]
b) [tex]0\ N . m^2/C[/tex]
c) [tex]742.5\ N . m^2/C[/tex]
Explanation:
Area of the plane is,
a) The plane is parallel to the yz-plane.
[tex]A = (0.350)(0.700)\\= 0.245\ m^2\\\phi_{E} = EA \cos \theta \\= (3.70 \times 10^3)(0.245) \cos0^{\circ}\\\phi_{E} = 906.5\ Nm^2/C\\[/tex]
b) The plane is parallel to the x-axis, the normal line of the area in at a right angle
[tex]\theta = 90^{\circ}\\ \phi_{E} = EA \cos \theta\\ \phi_{E} = (3.70 \times 10^3)(0.245) \cos 90^{\circ}\\ \phi_{E} = 0\ N . m^2/C\\[/tex]
c) The plane contains the y-axis, and its normal makes an angle of [tex]35.0^{\circ}[/tex] with the x-axis [tex]35.0^{\circ}[/tex]
[tex]\phi_{E} = EA \cos \theta\\ \phi_{E} = (3.70 \times 10^3)(0.245) \cos 35^{\circ}\\ \phi_{E} = 742.5\ N . m^2/C[/tex]