Answer:
The new position is 0.1865 m
Explanation:
As the context of the data is not available, thus following data is utilized from the question as attached above
x_relax=0.32 m
x_stiff=0.13 m
spring stiffness k=9 N/m
mass of block =0.073 kg
t=0.07 s
Velocity of the block is to be estimated thus
Force due to compression in spring is given as
F_s=k Δx
F_s=9(0.32-0.13)
F_s=1.71 N
Force on the block is given as
F_m=mg
F_m=0.073 x 9.8
F_m=0.71 N
Net Force
F=F_s-F_m
F=1.71-0.71 N
F=1 N
As Ft=Δp
So
Δp=1x0.07=0.07 kgm/s
Δp=p_final-p_initial
0.07=p_final-0
p_final=0.07 kgm/s
p_final=m*v_f
v_f=(p_final)/(m)
v_f=0.07/0.073
v_f=0.95 m/s
So now the velocity of the block is 0.95 m/s
time is 0.07 s
y_new=y_initial+y_travel
y_new=0.12+(0.95 x 0.07)
y_new=0.12+0.065
y_new=0.1865 m
So the new position is 0.1865 m