Option B:
[tex]I=1.0\times\ 10^{0} \ \text {watts}/ \text m^2}[/tex]
Solution:
Given sound level = 120 decibel
To find the intensity of a fire alarm:
[tex]$\beta=10\log\left(\frac{I}{I_0} \right)[/tex]
where [tex]I_0=1\times10^{-12}\ \text {watts}/ \text m^2}[/tex]
Step 1: First divide the decibel level by 10.
120 ÷ 10 = 12
Step 2: Use that value in the exponent of the ratio with base 10.
[tex]10^{12}[/tex]
Step 3: Use that power of twelve to find the intensity in Watts per square meter.
[tex]$10^{12}=\left(\frac{I}{I_0} \right)[/tex]
[tex]$10^{12}=\left(\frac{I}{1\times10^{-12}\ \text {watts}/ \text m^2} \right)[/tex]
Now, do the cross multiplication,
[tex]I=10^{12}\times1\times\ 10^{-12} \ \text {watts}/ \text m^2}[/tex]
[tex]I=1\times\ 10^{12-12} \ \text {watts}/ \text m^2}[/tex]
[tex]I=1\times\ 10^{0} \ \text {watts}/ \text m^2}[/tex]
[tex]I=1.0\times\ 10^{0} \ \text {watts}/ \text m^2}[/tex]
Option B is the correct answer.
Hence [tex]I=1.0\times\ 10^{0} \ \text {watts}/ \text m^2}[/tex].