Respuesta :

[tex]\bf \begin{array}{llll} \textit{logarithm of factors} \\\\ \log_a(xy)\implies \log_a(x)+\log_a(y) \end{array}~\hfill \begin{array}{llll} \textit{Logarithm of exponentials} \\\\ \log_a\left( x^b \right)\implies b\cdot \log_a(x) \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ 5\log(x)+6\log(x+7)\implies \log(x^5)+\log\left[ \left( x+7 \right)^6 \right] \implies \log\left[ x^5\left( x+7 \right)^6 \right][/tex]

Answer: log(x^5(x+7)^6)

Hope that helps! (: