Respuesta :

Answer:

The dimensions of the wall are 100 ft x 100 ft

Step-by-step explanation:

we know that

The perimeter of a rectangular wall is

[tex]P=2(x+y)[/tex]

where

x is the length

y is the width

we have

[tex]P=400\ ft[/tex]

so

[tex]400=2(x+y)[/tex]

simplify

[tex]200=x+y[/tex]

[tex]y=200-x[/tex] ----> equation A

The area of a rectangular wall is equal to

[tex]A=xy[/tex] ----> equation B

substitute equation A in equation B

[tex]A=x(200-x)\\A=-x^2+200x[/tex]

This is the equation of a vertical parabola open downward (because the leading coefficient is negative)

The vertex represent a maximum

Convert the quadratic equation in vertex form

[tex]A=-x^2+200x[/tex]

Factor -1

[tex]A=-(x^2-200x)[/tex]

Complete the square

[tex]A=-(x^2-200x+100^2)+100^2[/tex]

[tex]A=-(x^2-200x+10,000)+10,000[/tex]

Rewrite as perfect squares

[tex]A=-(x-100)^2+10,000[/tex] ----> equation in vertex form

The vertex is the point (100,10,000)

The x-coordinate of the vertex represent the length of the wall for a maximum area

so

[tex]x=100\ ft[/tex]

Find the value of y

equation A

[tex]y=200-(100)=100\ ft[/tex]

therefore

The dimensions of the wall are 100 ft x 100 ft