Answer:
72.25 ft
Step-by-step explanation:
The function that models the height of the ball is
[tex]h(t) = 68t - 16 {t}^{2} [/tex]
The maximum height occurs at:
[tex]t = - \frac{b}{2a} [/tex]
[tex]t = - \frac{68}{2 \times - 16} = \frac{68}{32} = 2.125[/tex]
We substitute t=2.125 to get:
[tex]h(2.125) = 68(2.125) - 16(2.125) ^{2} [/tex]
[tex]h(2.125) = 72.25[/tex]
The maximum height is 72.25 feet