Respuesta :

Answer:

[tex]x = 7( \sqrt{2} + \sqrt{6} ) \\ y = 14 \sqrt{3} [/tex]

Ver imagen rekaerst

Answer:

The answer to your question is  x = [tex]7\sqrt{2}[/tex]  and y = [tex]14\sqrt{3}[/tex]

Step-by-step explanation:

To find x and y use trigonometric functions

- Find x

To find x use the trigonometric function cosine

       cosine Ф = adjacent side/hypotenuse

- Solve for adjacent side (x)

       x = hypotenuse x cos Ф      

- Substitution

      x = 14[tex]\sqrt{2}[/tex] cos 60

Simplification

      x = 14[tex]\sqrt{2}[/tex] (0.5)

      x = 7[tex]\sqrt{2}[/tex]

- Find y

-Find the length of the opposite side of the small triangle

 Opposite side = sine Ф x hypotenuse

 Opposite side = 14[tex]\sqrt{2}[/tex] x sin 60

Opposte side = 14[tex]\sqrt{2}[/tex] ([tex]\sqrt{3}[/tex]/2)

Opposite side = 7[tex]\sqrt{6}[/tex]

- Find the length of y

 y = Opposite side/sin Ф    

 y = [tex]7\sqrt{6}[/tex] / [tex]\sqrt{2} /2[/tex]

 y = 14[tex]\sqrt{3}[/tex]