Respuesta :

1. Given

2. ∠LMO = 90° and ∠LMO = 90°

3. ∠LMO ≅ ∠LMO

4. Reflexive property of congruence

5. AA similarity theorem

Solution:

To prove: [tex]\Delta \mathrm{LMO} \sim \Delta \mathrm{PNO}[/tex]

Step 1: Given

[tex]\underline{L M} \perp \underline{M O}, \ \ \ \underline{PN} \perp \underline{M O}[/tex]

Step 2: Definition of ⊥ (perpendicular),

Two lines are perpendicular if and only if they form 90°.

∠LMO = 90° and ∠LMO = 90°

Step 3: All right angles are ≅ (congruent).

∠LMO ≅ ∠LMO

Step 4: Reflexive property of congruence.

Any angle is reflexive to itself.

∠O ≅ ∠O

Step 5: By AA similarity theorem,

ΔLMO and ΔPNO are similar.

ΔLMO [tex]\sim[/tex] ΔPNO

Hence proved.