Rewrite (2x^2+13x+26) / x+4 in the form q(x)+r(x)/b(x) . Then find q(x) and r(x). In the rewritten expression, q(x) is_____and r(x) is______ .
#1 a.)x+a , b.)2x+5 , c.)2x+13
#2 a.)0 , b.)6 , c.)226
ive been stuck on this for 15 mins and i need help plz

Respuesta :

The value of q(x) is [tex]2 x+5[/tex]

The value of r(x) is [tex]6[/tex]

Explanation:

The given expression is [tex]\frac{2 x^{2}+13 x+26}{x+4}[/tex]

We need to rewrite the expression in the form of [tex]q(x)+\frac{r(x)}{b(x)}[/tex]

Simplifying the expression, we get,

[tex]\frac{2 x^{2}+8 x+5x+26}{x+4}[/tex]

Separating the fractions, we have,

[tex]\frac{2 x^{2}+8 x}{x+4}+\frac{5 x+26}{x+4}[/tex]

[tex]2 x+\frac{5 x+26}{x+4}[/tex]  -----------(1)

Now, we shall further simplify the term [tex]\frac{5 x+26}{x+4}[/tex] , we get,

[tex]\frac{5 x+26}{x+4}=\frac{5 x+20}{x+4}+\frac{6}{x+4}[/tex]

Common out 5 from the numerator, we have,

[tex]\frac{5 x+26}{x+4}=5+\frac{6}{x+4}[/tex]

Substituting the value [tex]\frac{5 x+26}{x+4}=5+\frac{6}{x+4}[/tex] in the equation(1), we get,

[tex]2 x+5+\frac{6}{x+1}[/tex]

Thus, the expression [tex]\frac{2 x^{2}+13 x+26}{x+4}=2 x+5+\frac{6}{x+1}[/tex] is in the form of [tex]q(x)+\frac{r(x)}{b(x)}[/tex]

Hence, we have,

[tex]q(x)=2 x+5[/tex]

[tex]r(x)=6[/tex] and

[tex]b(x)=x+4[/tex]