In the coordinate plane, the length of the line segment that connects points at (0, -1) and (-7, -2) is 7.07 units.
Step-by-step explanation:
Here we have ,in coordinate plane we are given two points (0,-1 ) & ( -7,-2 ).
From Straight line concept, we know that Distance between any two pints in a plane i.e distance between points [tex]( x1, y1)[/tex] and [tex](x2,y2)[/tex] is given by:
[tex]D = \sqrt{(x_1 - x_2)^{2} + ( y_1-y_2)^{2}}[/tex] , Here [tex]( x_1, y_1)[/tex] = [tex]( 0 , -1)[/tex] and [tex](x_2,y_2)[/tex] = [tex](-7,-2)[/tex]
Putting values in above formula we get:
⇒[tex]D = \sqrt{(x_1 - x_2)^{2} + ( y_1-y_2)^{2}}[/tex]
⇒[tex]D = \sqrt{(0 - (-7))^{2} + ( -1-(-2))^{2}}[/tex]
⇒[tex]D = \sqrt{7^{2} + 1^{2}}[/tex]
[tex]D = \sqrt{50} units[/tex] = [tex]7.07 units[/tex]
∴In the coordinate plane, the length of the line segment that connects points at 0, -1 and. -7, -2 is [tex]7.07 units[/tex].