The state of plane strain on an element is:
εx=-300 x10⁻⁶, εy=0, and γxy=150 x 10⁻⁶.
Determine the equivalent state of strain which represents (a) theprincipal strains,and (b) the maximum in-plane shear strainand the associated average normal strain. Specify theorientation of the corresponding elements for these states of strain with respect to the original element.

Respuesta :

Answer:

a. ε₁=-0.000317

   ε₂=0.000017

θ₁= -13.28° and  θ₂=76.72°  

b. maximum in-plane shear strain =3.335 *10^-4

Associated average normal strain ε(avg) =150 *10^-6

θ = 31.71 or -58.29

Explanation:

[tex]\epsilon _{1,2} =\frac{\epsilon_x + \epsilon_y}{2} \pm \sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\epsilon _{1,2} =\frac{-300 \times 10^{-6} + 0}{2} \pm \sqrt{(\frac{-300 \times 10^{-6}+ 0}{2}) ^2 + (\frac{150 \times 10^-6}{2})^2}\\\\\epsilon _{1,2} = -150 \times 10^{-6} \pm 1.67 \times 10^{-4}[/tex]

ε₁=-0.000317

ε₂=0.000017

To determine the orientation of ε₁ and ε₂

[tex]tan 2 \theta_p = \frac{\gamma_xy}{\epsilon_x - \epsilon_y} \\\\tan 2 \theta_p = \frac{150 \times 10^{-6}}{-300 \times 10^{-6}-\ 0}\\\\tan 2 \theta_p = -0.5[/tex]

θ= -13.28° and  76.72°

To determine the direction of ε₁ and ε₂

[tex]\epsilon _{x' }=\frac{\epsilon_x + \epsilon_y}{2} + \frac{\epsilon_x -\epsilon_y}{2} cos2\theta + \frac{\gamma_xy}{2}sin2\theta \\\\\epsilon _{x'} =\frac{-300 \times 10^{-6}+ \ 0}{2} + \frac{-300 \times 10^{-6} -\ 0}{2} cos(-26.56) + \frac{150 \times 10^{-6}}{2}sin(-26.56)\\\\[/tex]

=-0.000284 -0.0000335 = -0.000317 =ε₁

Therefore θ₁= -13.28° and  θ₂=76.72°  

b. maximum in-plane shear strain

[tex]\gamma_{max \ in \ plane} =2\sqrt{(\frac{\epsilon_x + \epsilon_y}{2} )^2 + (\frac{\gamma_xy}{2})^2} \\\\\gamma_{max \ in \ plane} = 2\sqrt{(\frac{-300 *10^{-6} + 0}{2} )^2 + (\frac{150 *10^{-6}}{2})^2}[/tex]

=3.335 *10^-4

[tex]\epsilon_{avg} =(\frac{\epsilon_x + \epsilon_y}{2} )[/tex]

ε(avg) =150 *10^-6

orientation of γmax

[tex]tan 2 \theta_s = \frac{-(\epsilon_x - \epsilon_y)}{\gamma_xy} \\\\tan 2 \theta_s = \frac{-(-300*10^{-6} - 0)}{150*10^{-6}}[/tex]

θ = 31.71 or -58.29

To determine the direction of γmax

[tex]\gamma _{x'y' }= - \frac{\epsilon_x -\epsilon_y}{2} sin2\theta + \frac{\gamma_xy}{2}cos2\theta \\\\\gamma _{x'y' }= - \frac{-300*10^{-6} - \ 0}{2} sin(63.42) + \frac{150*10^{-6}}{2}cos(63.42)[/tex]

= 1.67 *10^-4