Respuesta :
Answer:
Approximately [tex]7.8\; \rm J[/tex].
Explanation:
The change in the gravitational potential energy of the pendulum is directly related to the change in its height.
Refer to the sketch attached. The pendulum is initially at [tex]\rm P_2[/tex]. Its highest point is at [tex]P_1[/tex]. The length of segment [tex]\rm BP_2[/tex] gives the change in its height.
The lengths of [tex]\rm AP_1[/tex] and [tex]\rm AP_2[/tex] are simply the length of the string, [tex]1.5\; \rm m[/tex]. To find the length of [tex]\rm BP_2[/tex], start by calculating the length of [tex]\rm AB[/tex].
[tex]\rm AB[/tex] forms a leg in the right triangle [tex]\rm \triangle AP_1B[/tex]. Besides, it is adjacent to the [tex]30^\circ[/tex] angle [tex]\rm P_1\hat{A}B[/tex]. Its length would be:
[tex]\rm AB = 1.5 \times \cos(30^\circ) \approx 1.30\; \rm m[/tex].
The length of [tex]\rm BP_2[/tex] would thus be
[tex]\rm BP_2 = AP_2 - AB = 1.5 - 1.30 \approx 0.20\; \rm m[/tex].
The change in gravitational potential energy can be found with the equation
[tex]\Delta \mathrm{GPE} = m \cdot g \cdot \Delta h[/tex]. In this equation,
- [tex]m[/tex] is the mass of the object,
- [tex]g \approx 9.81\; \rm N \cdot kg^{-1}[/tex] near the surface of the earth, and
- [tex]\Delta h[/tex] is the change in the object's height.
In this case, [tex]m = 4\; \rm kg[/tex] and [tex]\Delta h \approx 0.20\; \rm m[/tex]. Therefore:
[tex]\Delta \mathrm{GPE} = 4 \times 9.81 \times 0.20 \approx 7.8\; \rm J[/tex].