A Carnot engine receives 250 kJ·s−1 of heat from a heat-source reservoir at 525°C and rejects heat to a heat-sink reservoir at 50°C. What are the power developed and the heat rejected?

Respuesta :

Answer:

W = -148.8 kJ/s

Qc= -101.2 kJ/s

Explanation:

note:

Solution is attached in word form due to error in mathematical equation.  please find the attachment

Ver imagen Hashirriaz830
Lanuel

a. The quantity of heat rejected by the Carnot engine is equal to -101.2 kJ/s.

b. The power developed by the Carnot engine is equal to 148.8 kJ/s.

Given the following data:

  • Quantity of heat received = 250 kJ/s
  • Temperature of heat-source = 525°C
  • Temperature of heat rejected = 50°C

Conversion:

Temperature of heat-source = 525°C to Kelvin = 525 + 273 = 798K

Temperature of heat rejected = 50°C to Kelvin = 50 + 273 = 323K

To find the power developed and the heat rejected, we would use Carnot's equation:

[tex]-\frac{Q_R}{T_R} = \frac{Q_S}{T_S}[/tex]

Where:

  • [tex]Q_R[/tex] is the quantity of heat rejected.
  • [tex]T_R[/tex] is the heat-sink temperature.
  • [tex]T_S[/tex] is the heat-source temperature.
  • [tex]Q_S[/tex] is the quantity of heat received.

Making [tex]Q_R[/tex] the subject of formula, we have:

[tex]Q_R = -( \frac{Q_S}{T_S})T_R[/tex]

Substituting the given parameters into the formula, we have;

[tex]Q_R = -( \frac{250}{798}) \times 323\\\\Q_R = -( \frac{80750}{798})[/tex]

Quantity of heat rejected = -101.2 kJ/s

Now, we can determine the power developed by the Carnot engine:

[tex]P = -Q_S - Q_R\\\\P = -250 - (-101.2)\\\\P = -250 + 101.2[/tex]

Power, P = 148.8 kJ/s.

Read more: https://brainly.com/question/13144439?referrer=searchResults