Respuesta :
Answer:
1.7 m
Explanation:
Draw a free body diagram of the ladder. There are 5 forces:
Normal force N pushing up at the base of the ladder.
Friction force Nμ pushing right at the base of the ladder.
Weight force mg pushing down a distance d up the ladder.
Weight force Mg pushing down a distance L/2 up the ladder.
Reaction force R pushing left at the top of the ladder.
Sum of forces in the x direction:
∑F = ma
Nμ − R = 0
Sum of forces in the y direction:
∑F = ma
N − mg − Mg = 0
Sum of moments about the base of the ladder:
∑τ = Iα
mg (d cos θ) + Mg (L/2 cos θ) − R (L sin θ) = 0
Use the first equation to substitute for R:
mg (d cos θ) + Mg (L/2 cos θ) − Nμ (L sin θ) = 0
Use the second equation to substitute for N:
mg (d cos θ) + Mg (L/2 cos θ) − (mg + Mg) μ (L sin θ) = 0
Simplify and solve for d:
m (d cos θ) + M (L/2 cos θ) − (m + M) μ (L sin θ) = 0
m (d cos θ) = (m + M) μ (L sin θ) − M (L/2 cos θ)
d = [ (m + M) μ (L sin θ) − M (L/2 cos θ) ] / (m cos θ)
Plug in values and solve:
d = [ (67 kg + 12 kg) (0.39) (5 m sin 43°) − (12 kg) (2.5 m cos 43°) ] / (67 kg cos 43°)
d = 1.70 m
Rounded to two significant figures, the maximum distance is 1.7 m.