It takes a resistance heater having 2 kW power to heat a room having 5 m X 5 m X 6 m size to heat from 0 to 33 oC at sea level. Calculate the amount of time needed for this heating to occur in min (Please take Patm=101 kPa, give your answer with three decimals, and do NOT enter units!!!).

Respuesta :

Answer: 50 minutes

Explanation:

The energy needed to heat air inside the room is the electric energy dissipated by the resistance. It is known after using First Principle of Thermodynamics:

[tex]Q_{in,air} = \dot W_{dis, heater} \cdot \Delta t[/tex]

[tex]\rho_{air} \cdot V_{room} \cdot c_{p,air} \cdot \Delta T = \dot W_{dis,heater} \cdot \Delta t[/tex]

The needed time is:

[tex]\Delta t =\frac{\rho_{air}\cdot V_{room}\cdot c_{p,air} \cdot\Delta T}{\dot W_{dis,heater}}[/tex]

Where [tex]\rho_{air} = 1.20 \frac{kg}{m^{3}}[/tex] and [tex]c_{p,air} = 1.012 \frac{kJ}{kg \cdot ^{\circ} C}[/tex]:

[tex]\Delta t = 3005.640 s (50.094 min)[/tex]