Respuesta :

Option D:

[tex]\left(y^{2}+3 y+7\right)\left(8 y^{2}+y+1\right)=8 y^{4}+25 y^{3}+60 y^{2}+10y+7[/tex]

Solution:

Given expression is [tex]\left(y^{2}+3 y+7\right)\left(8 y^{2}+y+1\right)[/tex].

To find the product of the expression:

[tex]\left(y^{2}+3 y+7\right)\left(8 y^{2}+y+1\right)[/tex]

Multiply each term of the first term with each term of the 2nd term.

           [tex]=y^{2}\left(8 y^{2}+y+1\right) +3 y\left(8 y^{2}+y+1\right) +7\left(8 y^{2}+y+1\right)[/tex]

Using the exponent rule: [tex]a^m \cdot a^n = a^{m+n}[/tex]

           [tex]=\left(8 y^{4}+y^3+y^2\right) +\left(24 y^{3}+3y^2+3y\right) +\left(56 y^{2}+7y+7\right)[/tex]

           [tex]=8 y^{4}+y^3+y^2+24 y^{3}+3y^2+3y+56 y^{2}+7y+7[/tex]

Arrange the terms with same power.

           [tex]=8 y^{4}+y^3+24 y^{3}+y^2+3y^2+56 y^{2}+7y+3y+7[/tex]

           [tex]=8 y^{4}+25 y^{3}+60 y^{2}+10y+7[/tex]

Hence option D is the correct answer.

[tex]\left(y^{2}+3 y+7\right)\left(8 y^{2}+y+1\right)=8 y^{4}+25 y^{3}+60 y^{2}+10y+7[/tex]