Answer:
[tex]A_h=150\sqrt{3}\ m^2[/tex]
Step-by-step explanation:
Regular Hexagon
For the explanation of the answer, please refer to the image below. Let's analyze the triangle shown inside of the hexagon. It's a right triangle with sides x,y, and z.
We know that x is half the length of the side length of the hexagon. Thus
[tex]x=5 m[/tex]
Note that this triangle repeats itself 12 times into the shape of the hexagon. The internal angle of the triangle is one-twelfth of the complete rotation angle, i.e.
[tex]\theta=360/12=30^o[/tex]
Now we have [tex]\theta[/tex], the height of the triangle y is easily found by
[tex]\displaystyle tan30^o=\frac{x}{y}[/tex]
Solving for y
[tex]\displaystyle y=\frac{x}{tan30^o}=\frac{5}{ \frac{1} {\sqrt{3} }}=5\sqrt{3}[/tex]
The value of z can be found by using
[tex]\displaystyle sin30^o=\frac{x}{z}[/tex]
[tex]\displaystyle z=\frac{x}{sin30^o}=\frac{5}{\frac{1}{2}}=10[/tex]
The area of the triangle is
[tex]\displaystyle A_t=\frac{xy}{2}=\frac{5\cdot 5\sqrt{3}}{2}=\frac{25\sqrt{3}}{2}[/tex]
The area of the hexagon is 12 times the area of the triangle, thus
[tex]\displaystyle A_h=12\cdot A_t=12\cdot \frac{25\sqrt{3}}{2}=150\sqrt{3}[/tex]
[tex]\boxed{A_h=150\sqrt{3}\ m^2}[/tex]