What is the solution to log Subscript 2 Baseline (9 x) minus log Subscript 2 Baseline 3 = 3 x = three-eighths x = eight-thirds x = 3 x = 9

Respuesta :

Option B: [tex]x=\frac{8}{3}[/tex] is the solution

Explanation:

The given expression is [tex]\log _{2} 9 x-\log _{2} 3=3[/tex]  

We need to determine the solution for the given expression.

The solution can be determined by solving the expression for x.

Adding [tex]\log _{2} 3[/tex] to both sides of the expression, we have,

[tex]\log _{2}9 x=3+\log _{2}3[/tex]

Using the logarithmic definition that if [tex]\log _{a}(b)=c[/tex] then [tex]b=a^{c}[/tex]

Thus, we have,

[tex]9 x=2^{3+\log _{2}3}[/tex]

[tex]9 x=2^{3}\cdot 2^{\log _{2}3}[/tex]

Simplifying, using the identity [tex]a^{\log _{a}(b)}=b[/tex], we have,

[tex]9 x=8\cdot 3[/tex]

Multiplying, we get,

[tex]9x=24[/tex]

Dividing both sides by 9, we have,

[tex]x=\frac{24}{9}[/tex]

Simplifying, we have,

[tex]x=\frac{8}{3}[/tex]

Thus, the solution of the expression is [tex]x=\frac{8}{3}[/tex]

Answer:

B. x = eight-thirds

Step-by-step explanation:

edge 2021 ;)