Respuesta :

Answer:

The probability that the next customer will arrive in 3 minutes or less is 0.45.

Step-by-step explanation:

Let N (t) be a Poisson process with arrival rate λ. If X is the time of the next arrival then,

[tex]P(X>t)=e^{-\lambda t}[/tex]

Given:

[tex]\lambda=\frac{12}{60}[/tex]

t = 3 minutes

Compute the probability that the next customer will arrive in 3 minutes or less as follows:

P (X ≤ 3) = 1 - P (X > 3)

              [tex]=1-e^{-\frac{12}{60}\times3}\\=1-e^{-0.6}\\=1-0.55\\=0.45[/tex]

Thus, the probability that the next customer will arrive in 3 minutes or less is 0.45.

The probability that the next customer will arrive in 3 minutes or less is; 0.4512

This is a Poisson distribution problem with the formula;

P(X > t) = e^(-λt)

Where;

λ is arrival rate

t is arrival time

We are given;

λ = 12/60

t = 3 minutes

  • We want to find the probability that the next customer will arrive in 3 minutes or less. This is expressed as;

P (X ≤ 3) = 1 - (P(X > 3))

Thus;

P (X ≤ 3) = 1 - e^((12/60) × 3)

P (X ≤ 3) = 1 - 0.5488

P (X ≤ 3) = 0.4512

Read more about Poisson distribution at; https://brainly.com/question/7879375