A steam pipe has an outside diameter of 0.12 m. It is insulated with calcium silicate. The insulation is 20 mm thick. The temperature between the outer edge of the pipe and the inner radius of the insulation is maintained at 600 K. Convection and radiation are driving by a temperature of 25 degree C on the outside of the insulation. The convection heat transfer coefficient is 25 W/m^2 -K. The radiation heat transfer coefficient is 30 W/m^2-K. What is the rate of heat loss from the pipe on a per length basis? What is the temperature on the outside surface of the calcium silicate?

Respuesta :

Answer:

[tex]\dot Q = 524.957 W[/tex], [tex]T_{out} = 317.048 K[/tex].

Explanation:

a) The rate of heat loss is determined by following expression:

[tex]\dot Q = \frac{T_{ins, in} - T_{air}}{R_{th}}[/tex]

Where [tex]R_{th}[/tex] is the thermal resistance throughout the system:

[tex]R_{th} = R_{cond} + R_{conv || rad}[/tex]

Since convection and radiation phenomena are occuring simultaneously, the equivalent thermal resistance should determined:

[tex]\frac{1}{R_{conv||rad}} = \frac{1}{R_{conv}} + \frac{1}{R_{rad}}[/tex]

[tex]R_{conv||rad} = \frac{R_{conv}\cdot R_{rad}}{R_{conv} + R_{rad}}[/tex]

Where:

[tex]R_{conv} = \frac{1}{h_{conv} \cdot A} \\R_{rad} = \frac{1}{h_{rad} \cdot A}[/tex]

Outer surface area is given by:

[tex]A = 2 \cdot \pi \cdot r_{out} \cdot L[/tex]

Heat resistance associated to conduction through a hollow cylinder is:

[tex]R_{cond} = \frac{\ln \frac{r_{out}}{r_{in}} }{2 \cdot \pi L \cdot k}[/tex]

According to an engineering database, calcium silicate has a thermal conductivity k = [tex]0.085 \frac{W}{m \cdot K}[/tex]. Then, needed variables are calculated (L = 1 m):

[tex]r_{out} = 0.08 m, r_{in} = 0.06 m[/tex]

[tex]A \approx 0.503 m^2[/tex]

[tex]h_{conv} = 25 \frac{W}{m^{2}\cdot K}\\h_{rad} = 30 \frac{W}{m^2 \cdot K}[/tex]

[tex]R_{conv} = 0.080 \frac{K}{W}\\R_{rad} = 0.066 \frac{K}{W}[/tex]

[tex]R_{conv||rad} = 0.036 \frac{K}{W}[/tex]

[tex]R_{cond} = 0.539 \frac{K}{W}[/tex]

[tex]R_{th} = 0.575 \frac{K}{W}[/tex]

[tex]\dot Q = 524.957 W[/tex]

The temperature on the outside surface of the calcium silicate can be determined from the following expression:

[tex]\dot Q = \frac{T_{in}-T_{out}}{R_{cond}}[/tex]

Then,

[tex]T_{out}=T_{in}-\dot Q \cdot R_{cond}\\T_{out} = 317.048 K[/tex]