Answer:
1990 and 2010
[tex]y_l_w(15)=315\hspace{3}thousands\\y_l_c(15)=315\hspace{3}thousands\\y_l_w(35)=715\hspace{3}thousands\\y_l_c(35)=715\hspace{3}thousands[/tex]
Explanation:
Let:
[tex]y_l_w=Population\hspace{3}of\hspace{3}Lewiston\\y_l_c=Population\hspace{3}of\hspace{3}Lockport[/tex]
We need to know, in what year(s) the villages had the same population, mathematically this is:
[tex]y_l_w=y_l_c[/tex]
So:
[tex]x^2-30x+540=20x+15\\\\Subtract\hspace{3}20x\hspace{3}from\hspace{3}both\hspace{3}sides\\\\x^2-50x+540=15\\\\Subtract\hspace{3}15\hspace{3}from\hspace{3}both\hspace{3}sides\\\\x^2-50x+525=0[/tex]
Solving for x:
Factoring
[tex](x-15)(x-35)=0[/tex]
Hence:
[tex]x=15\\\\or\\\\x=35[/tex]
Therefore the year(s) which the village had the same population are:
[tex]1975+15=1990\\\\and\\\\1975+35=2010[/tex]
In order to find the population of both cities during the year(s) of equal population, just evalue the equations at x=15 and x=35:
[tex]y_l_w(15)=315\hspace{3}thousands\\y_l_c(15)=315\hspace{3}thousands\\y_l_w(35)=715\hspace{3}thousands\\y_l_c(35)=715\hspace{3}thousands[/tex]