Suppose that of 900 pints of ice cream for sale, 200 are sugarless, 500 are vanilla, and 50 sugarless vanilla. What is the probability that a pint selected at random is either sugarless or vanilla? Simplify the fraction. Group of answer choices 5/6 13/18 7/9

Respuesta :

Answer:

The probability that a pint selected at random is either sugarless or vanilla is [tex]\frac{13}{18}[/tex] ⇒ 2nd answer

Step-by-step explanation:

If A and B are to events, then

P(A or B) = P(A) + P(B) - P(A and B)

Probability of an event = [tex]\frac{n(event)}{n(total)}[/tex]

∵ There are 900 pints of ice-cream for sale

∴ n(total) = 900

∵ 200 are sugarless

∴ n(sugarless) = 200

- Divide n(sugarless) by n(total) to find P(sugarless)

∴ P(sugarless) = [tex]\frac{200}{900}[/tex]

P(sugarless) = [tex]\frac{2}{9}[/tex]

∵ 500 are vanilla

∴ n(vanilla) = 500

- Divide n(vanilla) by n(total) to find P(sugarless)

∴ P(vanilla) = [tex]\frac{500}{900}[/tex]

P(vanilla) = [tex]\frac{5}{9}[/tex]

∵ There are 50 sugarless vanilla

∴ n(sugarless and vanilla) = 50

- Divide n(sugarless and vanilla) by n(total) to find P(s and v)

∴ P(s and v) = [tex]\frac{50}{900}[/tex]

P(s and v) = [tex]\frac{5}{90}[/tex]

Let us use the rule above to find P(s or v)

∵ P(s or v) = P(s) + P(v) - P(s and v)

∴ P(s or v) = [tex]\frac{2}{9}+\frac{5}{9}-\frac{5}{90}[/tex]

P(s or v) = [tex]\frac{13}{18}[/tex]

∴ P(sugarless or vanilla) is [tex]\frac{13}{18}[/tex]

The probability that a pint selected at random is either sugarless or vanilla is [tex]\frac{13}{18}[/tex]