Respuesta :

Given:

A regular decagon has a side length of 6 meters.

We need to determine the area of the regular decagon.

Area of the regular decagon:

The area of the regular decagon can be determined using the formula,

[tex]A=\frac{5}{2} a^{2} \sqrt{5+2 \sqrt{5}}[/tex]

where a is the length of the side of the regular decagon.

Now, substituting a = 6 in the above formula, we get;

[tex]A=\frac{5}{2} (6)^{2} \sqrt{5+2 \sqrt{5}}[/tex]

Simplifying the terms, we have;

[tex]A=\frac{5}{2} (36) \sqrt{5+2 \sqrt{5}}[/tex]

[tex]A=90 \sqrt{5+2 \sqrt{5}}[/tex]

[tex]A=90 \sqrt{5+4.47}[/tex]

[tex]A=90 \sqrt{9.47}[/tex]

[tex]A=90(3.078)[/tex]

[tex]A=277.02[/tex]

Rounding off to the nearest tenth, we get;

[tex]A=277.0[/tex]

Therefore, the area of the regular decagon is 277.0 m²